Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.01.23290819

ABSTRACT

Evaluation of host-response blood transcriptional signatures of viral infection have so far failed to test whether these biomarkers reflect different biological processes that may be leveraged for distinct translational applications. We addressed this question in the SARS-CoV-2 human challenge model. We found differential time profiles for interferon (IFN) stimulated blood transcriptional responses represented by measurement of single genes. MX1 transcripts correlated with a rapid and transient wave of type 1 IFN stimulated genes (ISG) across all cell types, which may precede PCR detection of replicative infection. Another ISG, IFI27, showed a delayed but sustained response restricted to myeloid peripheral blood mononuclear cells, attributable to gene and cell-specific epigenetic regulation. These findings were reproducible in diverse respiratory virus challenges, and in natural infection with SARS-CoV-2 or unselected respiratory viruses. The MX1 response achieved superior diagnostic accuracy in early infection, correlation with viral load and identification of virus culture positivity, with potential to stratify patients for time sensitive antiviral treatment. IFI27 achieved superior diagnostic accuracy across the time course of symptomatic infection. Compared to blood, measurement of these responses in nasal mucosal samples was less sensitive and did not discriminate between early and late phases of infection.


Subject(s)
Virus Diseases , Respiratory Tract Infections
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524211

ABSTRACT

Children infected with SARS-CoV-2 rarely progress to respiratory failure, but the risk of mortality in infected people over 85 years of age remains high, despite vaccination and improving treatment options. Here, we take a comprehensive, multidisciplinary approach to investigate differences in the cellular landscape and function of paediatric (<11y), adult (30-50y) and elderly (>70y) nasal epithelial cells experimentally infected with SARS-CoV-2. Our data reveal that nasal epithelial cell subtypes show different tropism to SARS-CoV-2, correlating with age, ACE2 and TMPRSS2 expression. Ciliated cells are a viral replication centre across all age groups, but a distinct goblet inflammatory subtype emerges in infected paediatric cultures, identifiable by high expression of interferon stimulated genes and truncated viral genomes. In contrast, infected elderly cultures show a proportional increase in ITGB6hi progenitors, which facilitate viral spread and are associated with dysfunctional epithelial repair pathways. A video explaining this work can be found here - https://youtu.be/uExP4bx6D_A .


Subject(s)
Corneal Dystrophy, Juvenile Epithelial of Meesmann , Infections , Respiratory Insufficiency
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253012

ABSTRACT

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in pediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data as a highly granular reference for the study of immune responses in airways and blood in children.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.13.21249725

ABSTRACT

The COVID-19 pandemic, caused by SARS coronavirus 2 (SARS-CoV-2), has resulted in excess morbidity and mortality as well as economic decline. To characterise the systemic host immune response to SARS-CoV-2, we performed single-cell RNA-sequencing coupled with analysis of cell surface proteins, providing molecular profiling of over 800,000 peripheral blood mononuclear cells from a cohort of 130 patients with COVID-19. Our cohort, from three UK centres, spans the spectrum of clinical presentations and disease severities ranging from asymptomatic to critical. Three control groups were included: healthy volunteers, patients suffering from a non-COVID-19 severe respiratory illness and healthy individuals administered with intravenous lipopolysaccharide to model an acute inflammatory response. Full single cell transcriptomes coupled with quantification of 188 cell surface proteins, and T and B lymphocyte antigen receptor repertoires have provided several insights into COVID-19: 1. a new non-classical monocyte state that sequesters platelets and replenishes the alveolar macrophage pool; 2. platelet activation accompanied by early priming towards megakaryopoiesis in immature haematopoietic stem/progenitor cells and expansion of megakaryocyte-primed progenitors; 3. increased clonally expanded CD8+ effector:effector memory T cells, and proliferating CD4+ and CD8+ T cells in patients with more severe disease; and 4. relative increase of IgA plasmablasts in asymptomatic stages that switches to expansion of IgG plasmablasts and plasma cells, accompanied with higher incidence of BCR sharing, as disease severity increases. All data and analysis results are available for interrogation and data mining through an intuitive web portal. Together, these data detail the cellular processes present in peripheral blood during an acute immune response to COVID-19, and serve as a template for multi-omic single cell data integration across multiple centers to rapidly build powerful resources to help combat diseases such as COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adenocarcinoma, Bronchiolo-Alveolar
SELECTION OF CITATIONS
SEARCH DETAIL